

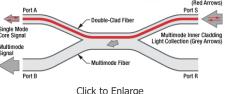
DC1060LEB - July 18, 2024

Item # DC1060LEB was discontinued on July 18, 2024. For informational purposes, this is a copy of the website content at that time and is valid only for the stated product.

2X2 DOUBLE-CLAD FIBER COUPLERS

- ▶ Wideband Double-Clad Fiber Couplers for 530 nm, 780 nm, or 1060 nm
- Ideal for OCT or Confocal Microscopy Applications
- ▶ Single Mode Core Insertion Loss: ≤0.5 dB
- At Least 60% Multimode Inner Cladding Transfer

2 DC530SEFA 530 nm Double-Clad Fiber Coupler with Connectors


DC780SEB 780 nm Double-Clad Fiber Coupler, No Connectors

OVERVIEW

Features

- · Four Wavelength Ranges
 - 430 680 nm
 - 680 980 nm
 - 960 1260 nm
- ≤0.5 dB Single Mode Core Insertion Loss
- At Least 60% Multimode Inner **Cladding Transfer**
- All Models Available With Connectors (780 nm and 1060 nm Available Without Connectors)
- 0.5 m or 0.8 m +0.075 / -0.0 m Long Fiber Leads
- · Individualized Data Sheet Included with Each Coupler (See the Verification Tab; Sample Data Sheets Available for 530 nm, 780 nm, or 1060 nm)

- Applications
 - Optical Coherence Tomography (OCT)
 - Fluorescence Imaging
 - Confocal Microscopy
 - Spectroscopy
 - · Surface Plasmon Resonance (SPR) Sensing
 - Speckle-Free Single-Fiber Endoscopy
 - LIDAR

Light Collect

The schematic above shows the internal structure of a double-clad fiber coupler. Single mode light input at Port A is used to illuminate a sample at Port S. Single mode and multimode light from the sample enters the single mode core (shown in red) and multimode inner cladding (shown in grey) of the DCF at Port S. The single mode signal travels through the core of the DCF and is output at port A; the multimode signal is transferred from the DCF to the multimode fiber and is output at Port B.

Multimode

and S) and fiber leads containing multimode fiber are color-coded orange (Ports B and R).

Thorlabs is collaborating with strategic partner Castor Optics to design and manufacture a family of Double-Clad Fiber Couplers. These 2x2 Double-Clad Fiber Couplers combine a double-clad fiber (single mode core surrounded by a multimode inner cladding) with a standard step-index multimode fiber, as shown in the illustration to the right. Light in the single mode core transmits with virtually no loss over the 430 - 680 nm, 680 - 980 nm, or 960

- 1260 nm wavelength range, depending upon the coupler. The multimode transfer, defined as the ratio of the output signal at Port B to the input signal at Port S, is ≥60% over a wider wavelength range of 400 - 1750 nm, excluding the water absorption region around 1383 nm. The diagram to the right depicts both single mode and multimode signals through a DCF coupler. Double-clad fiber couplers are well suited for applications at 530 nm, 780 nm, or 1060 nm.

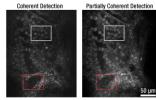
These optical properties allow double-clad fiber couplers to function as an alternative to free-space assemblies in many applications, including imaging and sensing. Our 1060 nm couplers are useful for applications such as spectrally encoded scanning laser ophthalmoscope (SESLO) OCT, which enable applications such as noninvasive imaging of the human retina. Our 530 nm and 780 nm couplers feature a small inner cladding (Ø15 µm and Ø26 µm, respectively) that make them ideal for applications in confocal microscopy. Please see the Applications tab for more information.

The fiber in each leg is jacketed in a Ø900 µm Hytrel[®]* tube, color-coded white for the DCF legs (Port A and Port S) and orange for the MM fiber legs (Port B and Port R), as shown in the schematic to the right.

These couplers are housed inside of a protective tube and are available with either all four legs unterminated (780 nm and 1060 nm only) or with a mix of 2.0 mm narrow key FC/PC and FC/APC connectors. In general, FC/APC connectors reduce back reflections from the single mode core of the double-clad fiber leg of the coupler; reflection is not an issue for the multimode output port, so an FC/PC connector is used for easier integration with other fiber components. The DC530SEFA, DC780SEFA, and DC1060LEFA include an FC/PC connector on port R to allow for connection to a beam trap when used with a mating sleeve. Please refer to the diagrams in the tables below for specific connector configurations.

Custom connector configurations and different performance characteristics may be available; please contact info@castoroptics.com with all custom inquiries.

*Hytrel[®] is a registered trademark of DuPont Polymers, Inc.


APPLICATIONS

Double-Clad Fiber Coupler (DCFC) Applications

Double-Clad Fiber Couplers can be implemented in many imaging, photonics, and LIDAR applications. The examples below specifically illustrate how DCFCs can be used in confocal microscopy, OCT, and endoscopy applications.

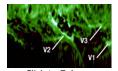
Confocal Microscopy and Partially Coherent Detection^a

In a free-space confocal microscope, pinhole apertures only allow coherent light at the focal plane to reach the detector, which enables optical sectioning and high-resolution images over a narrow focal plane. Widening the detection aperture allows a small amount of partially coherent light to reach the

Click to Enlarge Figure 1. Comparison of confocal images taken using a single mode fiber coupler (left) and DC780SEFA DCFC (right).

detector, creating images with reduced speckle noise and increased contrast, but slightly reduced resolution.

This same effect can be achieved using a small-diameter DCFC, such as the DC780SEFA or DC780SEB. In this scenario, the single mode core acts as an illumination pinhole while the small inner cladding (Ø26 µm) serves the purpose of the detection pinhole. Together, the core and inner cladding enable optical sectioning of the image just as in free space confocal microscopy. Using a DCFC in this manner ensures that the pinholes are always conjugate, because the detection pinhole surrounds the illumination pinhole. Finally, because the inner cladding diameter is just slightly larger than the core diameter, a small amount of partially coherent light is accepted, which reduces speckle noise and increases contrast.


Figure 1 compares images taken of a swine thyroid tissue section using a 50:50 single mode fiber coupler and a DC780SEFA DCFC, respectively. As seen in comparing the white and red boxed sections in the left and right images, using a DCFC reduces speckle artifacts in the image while increasing contrast of cellular features within the tissue sample. Figure 2 shows a series of confocal images taken of swine muscle tissue at depths from 15 µm to 105 µm using a single mode fiber coupler and a DC780SEB double-clad fiber coupler.

Optical Coherence Tomography and Fluorescence Imaging^b

DCFCs can also be used instead of traditional dichroic beamsplitters to allow both OCT and fluorescence imaging of a sample using the same objective and scanning optics. The OCT signal (Figure 3) is collected in the single mode core of the double-clad fiber (DCF), while the fluorescence signal (Figure 4) is collected in the cladding. The core and cladding signals can be combined to produce a detailed image that distinguishes between bronchioles and blood vessels, as shown in Figure 5.

Click to Enlarge Figure 3. OCT Image

Click to Enlarge Figure 4. Fluorescence Image

Click to Enlarge Figure 5. Combined OCT and Fluorescence Image

Speckle-Free Endoscopy^c

DCFCs can be used instead of traditional single mode 2x2 couplers in single-fiber endoscopy systems. When imaging a sample (Figure 6) with single mode fiber, laser speckle is present (Figure 7). Using both the single mode core and multimode cladding of the DCF for signal collection generates a higher quality image (Figure 8). Data from the core and inner cladding can also be used to create a three dimensional rendering of the subject as shown in Figure 9.

Figure 10 shows a sequence of 99 images of a wasp head obtained using a DCFC. Speckle-free reflectance maps are acquired using light collected from the multimode cladding of the DCF (left panel of the video). The right panel of the video shows an overlay of the interferometric height profiles collected using the DCF single mode core on top of the reflectance maps. This technique enables the construction of a 3-D profile of the specimen and requires no special sample preparation.

Figure 10. Speckle-free reflectance map using the multimode output of a DCFC (left) and an overlay of the interferometric height profile from the single mode output (right).

Figure 2. Sequence of confocal images of swine muscle tissue using single mode fiber coupler (left) and DC780SEB DCFC(right).

Figure 6. Photo (Sample

Click to Enlarge Figure 8. Speckle-Free Endoscopy Image Obtained Using a Double-Clad Fiber Coupler

Click to Enlarge Figure 7. Endoscopy Image Obtained Using an SM Fiber Coupler

Click to Enlarge Figure 9. 3D Image Generated from Speckle-Free Endoscopy Using a Double-Clad Fiber Coupler

References

- a. De Montigny et al., "Double-clad fiber for partially coherent detection." Opt. Express, 23, 9040-9051 (2015). Images used with permission.
- b. Lorenser et al., "Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography." Opt. Lett., 38, 266-268 (2013). Images used with permission.
- c. Lemire-Renaud et al., "Double clad fiber coupler for endoscopy." Opt. Express, 18, 9755-9764 (2010). Images used with permission. Video adapted with permission.

VERIFICATION

Double-Clad Fiber Coupler Verification

Our double-clad fiber couplers undergo stringent verification testing during production. The setups shown below are used to obtain a single mode transmission spectrum, insertion loss, and the multimode inner cladding transfer specification. Each coupler is shipped with an individualized data sheet providing a summary of the results of these tests. Click for a sample data sheet for 530 nm, 780 nm, or 1060 nm.

Step 1: Single Mode Insertion Loss/Transmission Measurement

The single mode input of the coupler is connected to a Broadband Light Source (BBS) through a single mode fiber and a spool of double-clad fiber (DCF). The SM coupler output is spliced to a coiled SM patch cable (to ensure cladding modes are stripped) that is connected to an Optical Spectrum Analyzer (OSA). A spectrum is recorded before and after

Click to Enlarge

SM Eiher Coi

SM Broadband Light Source

Single Mode Insertion Loss and Transmission Measurement

the fibers are fused to create the coupler. The difference between the two spectra can be defined as either Insertion Loss (dB) or Transmission (%).

Step 2: Multimode Transfer Measurement

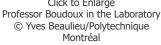
The multimode input of the coupler is connected to a diffused 635 nm laser source through a Ø105 μm core / Ø125 μm cladding multimode fiber and a spool of DCF. Doing so ensures that the inner cladding modes are filled. The Ø200 μm core / Ø220 μm cladding multimode fiber output of the coupler is connected to a silicon photodiode optical power meter. A first optical power is recorded. The coupler is then removed from the measurement setup and the DCF

spool is connected directly to the same power meter. A second optical power is recorded. The Multimode Inner Cladding Transfer is defined as the ratio of the first to second power measurements (%).

RESEARCH TEAM

Castor Optics, a Montreal-based leading manufacturer of double-clad fiber couplers, has been a key strategic partner of Thorlabs since 2013. Castor was founded by Caroline Boudoux, Nicolas Godbout, Normand Brais, and Alex Cable to commercialize the innovative fiber coupler technology developed in the laboratory by Caroline Boudoux and Nicolas Godbout. The team at Castor works closely with Thorlabs'

Montreal office to bring to market a broad range of fiber-based optical components for next-generation medical imaging devices and advanced instrumentation for use in the physical sciences.


About Caroline Boudoux

Caroline Boudoux earned her PhD from the Harvard-MIT Division of Health Sciences and Technology in 2007. She is an associate professor of engineering physics and principal investigator for the Laboratory for Optical Diagnoses and Imaging at École Polytechnique Montréal, a researcher at Sainte-Justine Hospital Research Center, and a visiting professor in the Department of Otology and Laryngology at Harvard Medical School. Her areas of research include biomedical imaging, optical coherence tomography, confocal and nonlinear microscopy, and endoscopic imaging.

About Nicolas Godbout

Nicolas Godbout earned his PhD in Engineering Physics from École Polytechnique de Montréal in 2000. Follwing this, he led the optical design team at ITF Optical Technologies. He is currently a professor and principal investigator for the Optical Fibers Laboratory at École Polytechnique Montréal. His research interests include nonlinear and quantum optics, fiber lasers, fiber-optic design and fabrication, characterization techniques, and biophotonics.

Click to Enlarge Castor Optics at Photonics West 2016 Tradeshow

Click to Enlarge Multimode Transfer Measurement

PUBLICATIONS

2015 Conference Presentations

L. Hariri, L. Bernstein, D. C. Adams, W.-J. Madore, A. J. Miller, M. Strupler, E. De Montigny, K. Beaudette, N. Godbout, C. Boudoux, and M. J. Suter. "Multimodal optical coherence tomography and fluorescence spectroscopy MEMS probe to assess inflammation in acute lung injury," in SPIE Photonics West, San Francisco, CA, 2015.

L. Bernstein, L. Hariri, W.-J. Madore, D. C. Adams, M. Strupler, E. De Montigny, K. Beaudette, Y. Wang, N. Godbout, M. J. Suter, and C. Boudoux. "Multimodal dualclad fiber MEMS probe for simultaneous OCT and fluorescence imaging of inflammation in the lung," in SPIE Photonics West, San Francisco, CA, 2015.

K. Beaudette, M. L. Villiger, M. Strupler, M. Shishkov, J. Ren, W.-J. Madore, N. Godbout, B. E. Bouma, and C. Boudoux. "Double clad fiber devices for combined optical coherence tomography and laser tissue coagulation," in SPIE Photonics West, San Francisco, CA, 2015.

Combined OCT and Fluorescence Imaging

D. Lorenser, B. C. Quirk, M. Auger, W.-J. Madore, R.W. Kirk, N. Godbout, D. D. Sampson, C. Boudoux, and R. A. McLaughlin. "Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography," *Optics Letters*, **38**, 266 - 268 (2013).

L. Scolaro, L. Dirk, W.-J. Madore, A. Kramer, G. C. Yeoh, N. Godbout, D. D. Sampson, C. Boudoux, and R. A. McLaughlin, "Dual-modality Imaging Needle for Combined Optical Coherence Tomography and Fluorescence Imaging of Fluorescently Labelled Tissue," in Biomedical Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper BS2B.7.

Surface Plasmon Resonance (SPR) Sensing

M. D. Baiad, M. Gagné, S. Lemire-Renaud, E. De Montigny, W.-J. Madore, N. Godbout, C. Boudoux, and R. Kashyap. "Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler," *Optics Express*, **21**, 6873 - 6879 (2013).

M. D. Baiad, M. Gagné, W.-J. Madore, E. De Montigny, N. Godbout, C. Boudoux, and R. Kashyap. "Surface plasmon resonance sensor interrogation with a doubleclad fiber coupler and cladding modes excited by a tilted fiber Bragg grating," *Optics Letters*, **38**, 4911 - 4914 (2013).

Speckle-Free Imaging

W.-J. Madore, E. De Montigny, O. Ouellette, S. Lemire-Renaud, M. Leduc, X. Daxhelet, N. Godbout, and C. Boudoux. "Asymmetric double-clad fiber couplers for endoscopy," *Optics Letters*, **38**, 4514 - 4517 (2013).

S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux. "Double-clad fiber coupler for endoscopy," *Optics Express*, **18**, 9755 - 9764 (2010).

Confocal Microscopy

E. De Montigny, W.-J. Madore, O. Ouellette, G. Bernard, M. Leduc, M. Strupler, C. Boudoux, N. Godbout, "Double-clad fiber for partially coherent detection," *Optics Express*, **23**, 9040 - 9051 (2015).

2x2 Double-Clad Fiber Couplers, 530 nm									
Item #	Info	Wavelength Range	Core Insertion Loss ^a (Click for Plot)	Multimode Inner Cladding Transfer ^b	DCF Core NA	DCF Inner Cladding Diameter	DCF Inner Cladding NA	MM Fiber Core NA	Termination ^c (Click for Diagram)
DC530SEFA	1	430 - 680 nm	≤0.5 dB	≥70%	0.11	15 µm	0.19	0.22	Ports A and S: FC/APC Ports B and R: FC/PC

a. Measured over the wavelength range from Port A to the core of Port S, as defined in the illustration on the *Overview* tab above. Performance from Port S to Port A will be similar.

b. Specified for light transfer from the inner cladding of Port S to Port B from 400 nm to 1750 nm, as described in the *Overview* tab. This specification excludes the water absorption region around 1383 nm.

c. All connectors are 2.0 mm narrow key. Additional lead lengths and connector options available upon request. Please contact Tech Support with inquiries.

DC530SEFA	2x2 Double-Clad Fiber Coupler, 530 nm, Connectors	\$1,240.34	Today
Part Number	Description	Price	Availability

Item #	Info	Wavelength Range	Core Insertion Loss ^a (Click for Plot)	Multimode Inner Cladding Transfer ^b	DCF Core NA	DCF Inner Cladding Diameter	DCF Inner Cladding NA	MM Fiber Core NA	Termination ^c (Click for Diagram)
DC780SEB	0	680 - 980 nm		> 70%	0.40	20.000	0.40	0.00	Unterminated, Scissor Cut
DC780SEFA	0		≤0.5 dB	≥70%	0.12	26 µm	0.19	0.22	Ports A and S: FC/APC Ports B and R: FC/PC

a. Measured over the wavelength range from Port A to the core of Port S, as defined in the illustration on the *Overview* tab above. Performance from Port S to Port A will be similar.

b. Specified for light transfer from the inner cladding of Port S to Port B from 400 nm to 1750 nm, as described in the *Overview* tab. This specification excludes the water absorption region around 1383 nm.

c. All connectors are 2.0 mm narrow key. All unterminated fiber ends are scissor cut.

Part Number	Description	Price	Availability
DC780SEB	DC780SEB 2x2 Double-Clad Fiber Coupler, 780 nm, No Connectors		Today
DC780SEFA	2x2 Double-Clad Fiber Coupler, 780 nm, Connectors	\$1,240.34	Today

2x2 Double-Clad Fiber Couplers, 1060 nm									
Item #	Info	Wavelength Range	Core Insertion Loss ^a (Click for Plot)	Multimode Inner Cladding Transfer ^b	DCF Core NA	DCF Inner Cladding Diameter	DCF Inner Cladding NA	MM Fiber Core NA	Termination ^c (Click for Diagram)
DC1060LEB	0	000 1000							Unterminated, Scisso Cut
DC1060LEFA	0	960 - 1260 nm	≤0.5 dB	≥60%	0.19	102 µm	0.24	0.26	Ports A and S: FC/APC Ports B and R: FC/PC

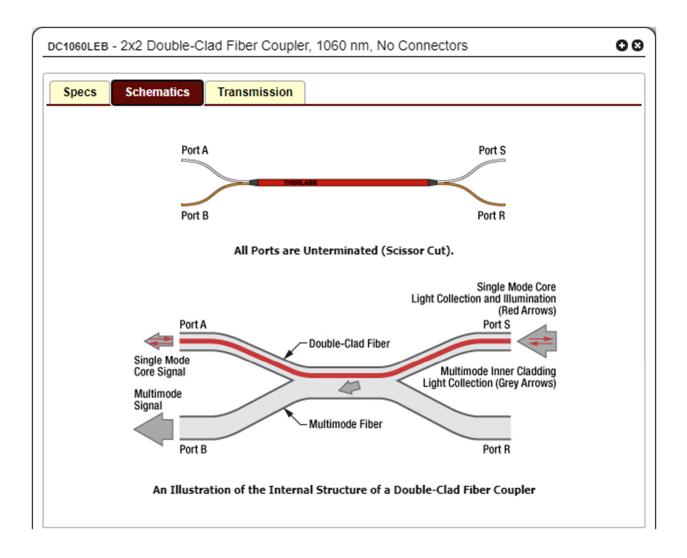
a. Measured over the wavelength range from Port A to the core of Port S, as defined in the illustration on the Overview tab above. Performance from Port S to Port A will be similar.

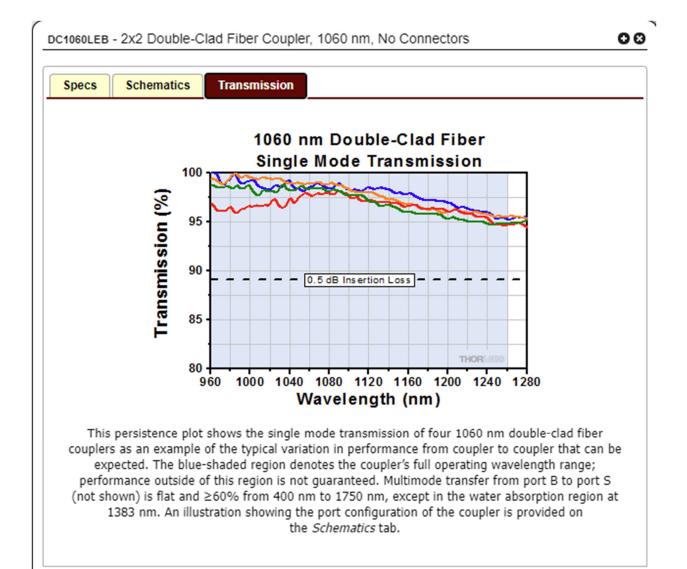
b. Specified for light transfer from the inner cladding of Port S to Port B from 400 nm to 1750 nm, as described in the *Overview* tab. This specification excludes the water absorption region around 1383 nm.

c. All connectors are 2.0 mm narrow key. All unterminated fiber ends are scissor cut.

Part Number Description		Availability
2x2 Double-Clad Fiber Coupler, 1060 nm, No Connectors	\$1,182.10	Lead Time
2x2 Double-Clad Fiber Coupler, 1060 nm, Connectors	\$1,233.34	Today
	2x2 Double-Clad Fiber Coupler, 1060 nm, No Connectors	2x2 Double-Clad Fiber Coupler, 1060 nm, No Connectors \$1,182.10

DC1060LEB - 2x2 Double-Clad Fiber Coupler, 1060 nm, No Connectors


pecs Schematics Transmission	
Coupler Spe	cifications
Wavelength Range	960 - 1260 nm
Single Mode Core Insertion Loss ^a	≤0.5 dB
Multimode Inner Cladding Transfer ^b	≥60%
Max Power Level	100 mW
Port Configuration	2x2
Fiber Lead Length and Tolerance ^c	0.8 m +0.075 m / -0.0 m
Connectors ^c	Unterminated, Scissor Cut
Package Size	Ø0.12" x 3.15" (Ø3.2 mm x 80.0 mm)
Jacket	Ø900 µm Hytrel [®] Loose Tube
Pigtail Tensile Load	10 N
Operating Temperature Range	-40 to 85 °C
Storage Temperature Range	-40 to 85 °C
a Measured over the wavelength range from	Port A to the core of Port S. See


a. Measured over the wavelength range from Port A to the core of Port S. See the Schematics tab for an illustration with labeled coupler ports.
b. Specified for light transfer from the inner cladding of Port S to Port B from 400 nm to 1750 nm. This specification excludes the water absorption region around 1383 nm.
c. Additional lead lengths and connector options available upon request. Please contact <u>techsupport@thorlabs.com</u> with inquiries.

Fiber Specifications						
Fiber Type	Double-Clad Fiber	Multimode Fiber				
Jacket Color	White	Orange				
Core Diameter	4 µm (Typical)	200 µm				
Core NA	0.19	0.26				
Cut-Off Wavelength ^a	≤960 nm	-				
Inner Cladding Diameter	102 µm	-				
Inner Cladding NA	0.24	-				
Outer Cladding Diameter	125 µm	220 µm				

a. Single mode operation of the coupler is not guaranteed below the fiber cut-off wavelength. See the *Transmission* tab for details.

r

